首页 > 技术动态 > 正文

科学杂志对美国Tri Alpha核聚变公司的报道
2015-08-13 20:51:53   来源:冷聚变世界翻译整理   评论:0 点击:

2015年6月,美国科学杂志对可控核聚变初创公司Tri Alpha Energy Inc进行了报道,根据该公司提供的信息看,他们的聚变反应堆已经取得了一些进展,但是还没实质性突破,本片报道为我们揭开了神秘Tri Alpha Energy Inc 面纱的一个角,让我们科学杂志怎么说?


 
 
聚变反应堆依赖的于场反向位形:烟圈形状的等离子体用自身的磁场将进行自身约束


    文章的原文标题为:Mystery company blazes a trail in fusion energy,中文翻译为:神秘公司为聚变能源开辟新的道路。
 
    少数几个初创公司试图采用非传统的方法来开发聚变能源,他们之中的Tri Alpha Energy Inc对外界来说始终是个谜,该公司没有网站对外公开也很少,但是却坐拥上亿美元的投资,这个位于加州山峦牧场的公司曾经受到外界广泛的好奇和猜测。上个月,Tri Alpha公司
 
    公开了两页关于其装置的资料,他们称之为:对撞束聚变反应堆,这个反应堆取得了十倍于美国大学和实验室早期聚变实验所取得约束等离子体成果。
 
    麦迪逊的威斯康辛大学聚变技术研究所的等离子体物理学家John Santarius说:他们取得了很大的进步并且正朝着非常有希望的方向前进。
 
    聚变能源尝试复制出驱动太阳或恒星的能量:把原子加热到足够高的温度使得他们能够克服斥力结合到一起并实现聚变。我们面临的挑战是将等离子体(电子和原子核分离)在高温条件下(超过一亿五千万度)尽可能长时间约束到一起使得聚变反应发生。在过去长达
 
    60年里,聚变反应的研究主要集中在托克马克:一个外形像甜甜圈的大型容器通过强磁场约束等离子体,或者是激光聚变:通过使用高能激光脉冲来将小的燃料丸挤压到一起。但是介于这着两种低密度和高密度之间的一系列其他方法并没有得足够的政府资助。现在,初创公司们开始弥补这个真空。
 
    Tri Alpha公司的装置依赖于一个名叫场反向位形的等离子体现象,类似于烟圈形状的等离子体。由于等离子体是由带电粒子(电子和原子核)构成,场反向位形场(FRC)内的旋转粒子产生一个磁场,磁场可以将这圆圈约束到一起使聚变进行下去。Tri Alpha公司23米长装置内部长管里有无数圆形的磁场,而其他装置的磁场是沿着容器的方向。这个装置产生的烟圈形等离子体彼此首尾相连并以250公里每秒的速度将发射到容器中间。在中心位置,他们合并到一起,其动能转化成热量而制造一个高温的场反向位形场。
 
    在他们早期的尝试中,他们制造出了长时间的场反向位形,等离子体的湍流造成热粒子迁移到容器的边缘导致热量散失,从而使得烟圈萎缩从而消失。尽管反向位形(FRC)可以比其他等离子约束方法更稳定,但圆圈形的等离子容易倾斜而变形撞击容器的内壁而分解。结果,科研人员并没不能挤压场反向位形(FRC)超过0.3毫秒。 Santarius说,他们获得不到需要的参数。Santarius过去一直在Tri Alpha公司工作并从该公司获得资助。
 
    科研人员理论推导出通过将高速粒子射入等离子体中可以制造出足够长的场反向位形场(FRC)。Tri Alpha公司的首席科学家Michl Binderbauer说,一旦粒子进入反向位形场(FRC),它自身的磁场将他们弯曲成宽的轨道,这会将等离子体的不稳定变得僵化同时阻止
 
    形成湍流造成的热量流失。来自于新墨西哥州的洛斯阿拉莫斯国家实验室的等离子体物理学家Glen Wurden说:加入高速粒子是件好事。Tri Alpha公司和位于俄罗斯阿卡杰姆戈罗多克Budker核物理研究所合作,他们给Tri Alpha公司提供等离子束源来验证他们的方法。
 
    他们很快知道单单使用粒子束不能奏效,反向位形场(FRC)的条件也要对路。Binderbauer说,粒子束也可以直接穿过去。因此Tri Alpha公司开发了一种称为边缘偏压edge biasing的技术:在反向位形场(FRC)附近用使用位于反应器管子末端的电极来控制这个条件。
 
    在上个月发表在Physics of Plasmas and Nature Communications杂志上文章中,Tri Alpha公司的团队揭示了粒子束的速度,边缘偏置,以及其他提高使他们获得了长达5毫秒的反向位形场(FRC)条件,他们在时间和能量损失方面提高了足足10倍。Wurden说:他们应用了所有已知的技术到这个巨大的,高质量的等离子上,而这只需要几百万美元就可以完成。Tri Alpha公司获得了来自一群多样化的投资者支持,Binderbauer说:这些投资者包括风险投资公司,亿万富豪,以及俄罗斯政府所属公司Nanotechnology Corp。
 
    要实现聚变能量增益,也就是说输出能量大于输入能量,研究人员要制造长达1秒钟的反向位形场(FRC)。尽管这个成绩还差的很远,Santarius说,Tri Alpha公司展示了一条向前的路:如果他们能够扩大尺寸,那么约束的能量也会变大。他补充到,Tri Alpha公司正在研发一套升级的装置,这个装置定位于不同的粒子束,粒子的能量也更强。
 
    原文地址:http://news.sciencemag.org/physics/2015/06/mystery-company-blazes-trail-fusion-energy

 
冷聚变世界
2015年8月13日

 
附英文原文:Of the handful of startup companies trying to achieve fusion energy via nontraditional methods, Tri Alpha Energy Inc. has always been the enigma. Publishing little and with no website, but apparently sitting on a cash pile in the hundreds of millions, the Foothill Ranch, California–based company has been the subject of intense curiosity and speculation. But last month Tri Alpha lifted the veil slightly with two papers revealing that its device, dubbed the colliding beam fusion reactor, has shown a 10-fold improvement in its ability to contain the hot particles needed for fusion over earlier devices at U.S. universities and national labs.

“They’ve improved things greatly and are moving in a direction that is quite promising,” says plasma physicist John Santarius of the Fusion Technology Institute at the University of Wisconsin, Madison.

Fusion energy seeks to replicate the power source of the sun and stars: heating atoms to enormous temperatures so that their nuclei slam together with enough force to overcome their mutual repulsion and fuse, releasing energy. The challenge on Earth is to confine plasma—an ionized gas, with electrons and nuclei separated—at high temperatures (greater than 150 million degrees Celsius) long enough for fusion reactions to occur. Most effort over the past 60 years of fusion research has focused on tokamaks—huge doughnut-shaped vessels that confine plasma with powerful magnets—and laser fusion, which uses high-energy laser pulses to squeeze tiny capsules of fuel. But between these low-density and high-density extremes there is a range of other approaches that have received little government funding. Now, startup companies are moving into that vacuum.

Tri Alpha’s device relies on a plasma phenomenon called a field-reversed configuration (FRC), akin to a smoke ring of plasma. Because plasma is made of charged particles (electrons and nuclei), the swirling particles in the FRC create a magnetic field that acts to hold the ring together, potentially long enough for fusion to get going. Tri Alpha’s 23-meter-long device has at its heart a long tube with numerous ring-shaped magnets and other devices along its length. It creates a plasma smoke ring close to each end and fires them toward the middle at 250 kilometers per second. At the center they merge, converting their kinetic energy into heat to produce a high-temperature FRC.

In earlier attempts to create long-lived FRCs, turbulence in the plasma caused heat to leak away as hot particles migrated to the edge and escaped, causing the smoke ring to shrink and fade away. And although FRCs proved more stable than other ways of confining plasma, the ring-shaped plasma did tend to tilt or lose shape, causing it hit the tube wall and disintegrate. As a result, researchers couldn’t push the lifetime of high-temperature FRCs beyond about 0.3 milliseconds. “They had trouble getting parameters to what was needed,” says Santarius, who in the past has worked with Tri Alpha researchers and received funding from the company.

Researchers had theorized that an FRC could be made to live longer by firing high-speed ions into the plasma. Michl Binderbauer, Tri Alpha’s chief technology officer, says that once the ions are inside the FRC, its magnetic field curves them into wide orbits that both stiffen the plasma against instability and suppress the turbulence that allows heat to escape. “Adding fast ions does good things for you,” says Glen Wurden of the Plasma Physics Group at Los Alamos National Laboratory in New Mexico. Tri Alpha collaborated with Russia’s Budker Institute of Nuclear Physics in Akademgorodok, which provided beam sources to test this approach. But they soon learned that “[ion] beams alone don’t do the trick. Conditions in the FRC need to be right,” Binderbauer says, or the beams can pass straight through. So Tri Alpha developed a technique called “edge biasing”: controlling the conditions around the FRC using electrodes at the very ends of the reactor tube.

In papers published last month in Physics of Plasmas and Nature Communications, the Tri Alpha team reveals how fast ions, edge biasing, and other improvements have enabled them to produce FRCs lasting 5 milliseconds, a more than 10-fold improvement in lifetime, and reduced heat loss. “They’re employing all known techniques on a big, good-quality plasma,” Wurden says. “It shows what you can do with several hundred million dollars.” Tri Alpha is supported by “a very diverse group of investors,” Binderbauer says, including venture capital companies, billionaire individuals, and the government-owned Russian Nanotechnology Corp.

To achieve fusion gain—more energy out than heating pumped in—researchers will have to make FRCs last for at least a second. Although that feat seems a long way off, Santarius says Tri Alpha has shown a way forward. “If they scale up size, energy confinement should go up,” he says. Tri Alpha researchers are already working with an upgraded device, which has differently oriented ion beams and more beam power.

 

相关热词搜索:美国 能源 杂志

上一篇:瑞典科学家采用激光诱导实现核聚变能量盈余
下一篇:空客公司首席科学家声称能源技术取得突破

分享到: 收藏