低能核反应(LENR)的一种解释 — 张武寿译
2018-01-07 12:02:37   来源:冷聚变世界   评论:0 点击:

本文译自E Storms: “An Explanation of Low-energy Nuclear Reactions (Cold Fusion)”, J Condensed Matter Nucl Sci 9 (2012) 86–107。文章由中科院化学所研究员张武寿老师翻译,是一篇了解冷聚变不可多得的文章。感谢张武寿老师提供资料!
107A(1): 143-156.
[79]     Capek, V., Tunnelling efficiency and the problem of cold fusion. Czech. J. Phys., 1989. B39: 793.
[80]     Turner, L., Thoughts unbottled by cold fusion. Phys. Today, 1989. Sept.: 140.
[81]     Parmenter, R.H., A possible scenario for the onset of cold fusion in deuterated metals. Infinite Energy, 1998. 4(21): 41.
[82]     Fulvio, F. Theoretical comparison between semi-classic and quantum tunneling effect any application coherence theory on the tumor. in Condensed Matter Nuclear Science, ICCF-12. 2005. Yokohama, Japan: World Scientific. p. 494.
[83]     Feng, S., Enhancement of cold fusion rate by electron polarization in palladium deuterium solid. Solid State Commun., 1989. 72: 205.
[84]     Li, X.Z., C.X. Li, and H.F. Huang, Maximum value of the resonant tunneling current through the Coulomb barrier. Fusion Technol., 1999. 36: 324.
[85]    Hora, H., G. Miley, and J. Kelly, Low-energy nuclear reactions of protons in host metals at picometer distance. Trans. Am. Nucl. Soc., 2000. 83: 357.
[86]     Hora, H., et al., Proton-metal reactions in thin films with Boltzmann distribution similar to nuclear astrophysics. Fusion Technol., 1999. 36: 331.
[87]     Hora, H., et al. Shrinking of hydrogen atoms in host metals by dielectric effects and Inglis-Teller depression of ionization potentials. in The 9th International Conference on Cold Fusion, Condensed Matter Nuclear Science. 2002. Tsinghua Univ., Beijing, China: Tsinghua Univ. Press. p. 135.
[88]     Miley, G.H., H. Hora, and X. Yang, Condensed Matter “Cluster” Reactions in LENRs. in ICCF-14 International Conference on Condensed Matter Nuclear Science. 2008. Washington, DC. pp. 451-457 or : http://lenr-canr.org/acrobat/MileyGHcondensedm.pdf.
[89]     Miley, G.H. Emerging physics for a breakthrough thin-film electrolytic power unit. in Space Technol. Applic. Int. Forum. 1999. 1227.
[90]     Miley, G., et al. Cluster reactions in low energy nuclear reactions (LENR). in 8th International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals. 2007. Catania, Sicily, Italy: The International Society for Condensed Matter Science. pp. 235-251.
[91]     Badiei, S., P.U. Andersson, and L. Holmlid, Laser-induced variable pulse-power TOF-MS and neutral time-of-flight studies of ultradense deuterium. Phys. Scr., 2010. 81(4): 045601.
[92]     Miley, G., X.Yang, and H. Hora, Ultra-High Density Deuteron-cluster Electrode for Low-energy Nuclear Reactions. J. Cond. Matter Nucl. Sci., 2011. 4: 256-268.
[93]     Takahashi, A., et al., Emission of 2.45 MeV and higher energy neutrons from D2O-Pd cell under biased-pulse electrolysis. J. Nucl. Sci. Technol., 1990. 27: 663.
[94]     Isobe, Y., et al. Search for coherent deuteron fusion by beam and electrolysis experiments. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy. pp. 17-22.
[95]     Iwamura, Y., et al., Observation of Low Energy Nuclear Transmutation Reactions Induced by Deuterium Permeation through Multilayer Pd and CaO thin Film. J. Cond. Matter Nucl. Sci., 2011. 4: 132-144.
[96]     Takahashi, A. Tetrahedral and octahedral resonance fusion under transient condensation of deuterons at lattice focal points. in ICCF9, 9th International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua University: Tsinghua Univ., China. p. 343.
[97]     Hagelstein, P.I., On the connection between Kα X-rays and energetic alpha particles in Fleischmann–Pons experiments. J. Cond. Matter Nucl. Sci., 2010. 3: 50-58.
[98]     Kim, Y.E. Bose-Einstein Condensation Nuclear Fusion: Theoretical Predictions and Experimental Tests. in 15th International Conference on Condensed Matter Nuclear Science. 2009. Rome, Italy: ENEA, Italy. pp. 288-296.
[99]     Kim, Y.E., Bose–Einstein Condensate Theory of Deuteron Fusion in Metal. J. Cond. Matter Nucl. Sci., 2011. 4: 188-201.
[100]  Cornell, E.A. and C.E. Wieman, The Bose-Einstein Condensate. Sci. Am., 1998. 278(3): 40-45.
[101]  Zwierlein, M.W., et al., Observation of Bose–Einstein Condensation of Molecules. Phys. Rev. Lett., 2003. 91: 250401.
[102]  Piantelli, F., Energy generation and generator by means of anharmonic stimulated fusion. 2010: World Property Organization.
[103]  Campari, E.G., et al. Nuclear reactions in Ni-H systems. in 6th International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals. 2005. Siena, Italy.
[104]  Campari, E.G., et al. Surface analysis of hydrogen-loaded nickel alloys. in 11th International Conference on Cold Fusion. 2004. Marseilles, France: World Scientific Co. p. 414.
[105]  Campari, E.G., et al. Photon and particle emission, heat production and surface transformation in Ni-H system. in 11th International Conference on Cold Fusion. 2004. Marseilles, France: World Scientific Co. p. 405.
[106]   Focardi, S., et al. Evidence of electromagnetic radiation from Ni-H systems. in 11th International Conference on Cold Fusion. 2004. Marseilles, France: World Scientific Co. p. 70.
[107]  Campari, E.G., et al. Overview of H-Ni systems: Old experiments and new setup. in 5th Asti Workshop on Anomalies in Hydrogen / Deuterium loaded Metals. 2004. Asti, Italy.
[108]  Campari, E.G., et al. Ni-H systems. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy. p. 69.
[109]  Battaglia, A., et al., Neutron emission in Ni-H systems. Nuovo Cimento, 1999. 112 A: 921.
[110]   Focardi, S., et al., Large excess heat production in Ni-H systems. Nuovo Cimento, 1998. 111A(11): 1233.
[111] Focardi, S., et al. On the Ni-H system. in Asti Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals. 1997. Villa Riccardi, Italy: Societa Italiana Di Fisica. p. 35.
[112]  Focardi, S., R. Habel, and F. Piantelli, Anomalous heat production in Ni-H systems. Nuovo Cimento, 1994. 107A: 163.
[113]  Rossi, A., Journal of Nuclear Physics. 2012, www.journal-of-nuclear-physics.com/.
[114]  Rossi, A., Method and apparatus for carrying out nickel and hydrogen exothermal reaction. 2011: USA.
[115]  Badiei, S., P.U. Andersson, and L. Holmlid, Fusion reactions in high-density hydrogen: A fast route to small-scale fusion? Int. J. Hydrogen Energy, 2009. 34(1): 487.
[116]  Badiei, S., P.U. Andersson, and L. Holmlid, Production of ultradense deuterium: A compact future fusion fuel. Appl. Phys. Lett., 2010. 96: 124103.
[117]  Arachi, Y., et al., Structural analysis of nano-sized-Pd/ZrO2 composite after H(D) absorption. Solid State Ionics, 2006. 177: 1861.
[118]   Takahashi, A., et al. Deuterium Gas Charging Experiments with Pd Powders for Excess Heat Evolution (II). Discussions on Experimental Results and Underlying Physics. in The 9th Meeting of Japan CF-Research Society. 2009. Shizuoka, Japan: www.lenr.org. p. 29.
[119]  Celani, F., et al. High temperature deuterium absorption in palladium nano-particles. in International Conference on Con-densed Matter Nuclear Science, ICCF-13. 2007. Sochi, Russia: Tsiolkovsky Moscow Technical University. p. 181.
[120]  Mansoori, G.A., P.L. Barros de Araujo, and E. Silvano de Araujo, Diamondoid molecules. 2012: World Scientific, Imperial College Press.
[121] Dmitriyeva, O., et al. Deuterium & hydrogen loading into nano-Pd on zeolite and alumina matrices at low pressures. in ICCF-16. 2011. Chennai, India.
[122] Frisone, F., Theoretical model of the probability of fusion between deuterons within deformed crystalline lattices with micro-cracks at room temperature. Fusion Sci. & Technol., 2001. 40: 139.
[123]  McIntyre, R. Proposal for an experiment designed to seek evidence for cold fusion. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: World Scientific Publishing Co. p. 611.
[124]   Liaw, B.Y., et al., Elevated-temperature excess heat production in a Pd + D system. J. Electroanal. Chem., 1991. 319: 161.
[125]  Harris, P.J.F., Carbon nanotube science. 2009, New York: Cambridge Univ. Press. 301.
[126]  Mills, R., The grand unified theory of classical quantum mechanics. 2006, Ephrata, PA: Cadmus Professional Communications. 1450.
[127] Frisone, F. Probability of deuteron plasmon fusion at room temperature within microcracks of crystalline lattices with deuterium loading. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy. p. 443.
[128]  Bockris, J.O.M. and P.K. Subramanyan, The equivalent pressure of molecular hydrogen in cavities within metals in terms of the overpotential developed during the evolution of hydrogen. Electrochim. Acta, 1971. 16: 2169.
[129]   Vigier, J.P. New hydrogen energies in specially structured dense media: capillary chemistry and capillary fusion. in Third International Conference on Cold Fusion, Frontiers of Cold Fusion. 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan. p. 325.
[130]  Chien, C.-C., et al., On an electrode producing massive quantities of tritium and helium. J. Electroanal. Chem., 1992. 338: 189-212.
[131]  Schwinger, J., Cold fusion: a hypothesis. Z. Naturforsch., 1990. 45A: 756.
[132]  Fiarman, S. and W.E. Meyerhof, Energy levels of light nuclei A=4. Nucl. Phys. A, 1973. 206 (1): 1-64.
[133]   Mosier-Boss, P.A., et al., Comparison of Pd/D co-deposition and DT neutron generated triple tracks observed in CR-39 detectors. Eur. Phys. J. Appl. Phys., 2010. 51(2): 20901.
[134]   Swartz, M.R. and G. Verner, Bremsstrahlung in hot and cold fusion. J. New Energy, 1999.

相关热词搜索:低能核反应,冷聚变,LENR

上一篇:质子变中子现象在镍氢冷聚变燃料中的体现
下一篇:低能核反应(LENR)中子交换可能性的推导

分享到: 收藏